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Abstract. A quantum statistical analysis of the interaction of a radiation field with a system 
of electrons in cyclotron motion in a homogeneous magnetic field is presented. With high 
magnetic fields the interaction offers a possible means for detecting far infrared radiation. 
The redistribution of electrons in the Landau ladder of states after interaction with the 
field is calculated for various initial quantum states. The sensitivity of the detector is shown 
to depend crucially upon the initial quantum state of the electrons. 

1. Introduction 

Recently a novel technique for the detection of far infrared radiation based on free 
electron cyclotron resonance in a high magnetic field has been proposed by Robinson 
(1970, 1973). This is a natural extension of the principle employed in the Putley free 
carrier photoconductor detector (Putley 1963) to free electrons and should find appli- 
cation at the longer wavelength end of the far infrared. 

The operation of the detector can be described in terms of induced transitions 
between Landau levels with the energy eigenstates of cyclotron motion W, = ( n + # w , ,  
n = 0, 1 , 2 . .  . , where w, is the angular frequency of the orbiting electrons. By a certain 
configuration of magnetic fields (Robinson 1970a, b, Robinson and Szekeres 1970), 
electrons are initially pumped into the energy eigenstate n = mu32hwC (m is the electron 
mass and uo its velocity prior to interaction with the field) or a coherently phased super- 
position of energy eigenstates (Malkin and Man’ko 1969). The interaction of the 
cyclotron resonance oscillators with a radiation field then redistributes the electrons 
within the Landau levels of states. The distribution of electrons is measured by detecting 
the electrons which overcome an applied bias potential barrier, thus giving a measure 
of the perturbing field. 

A quantum mechanical description of the interaction between the radiation field 
and the system of electrons undergoing cyclotron motion was advanced by Robinson 
and Whitbourn (1972). Following Landau and Lifshitz (1965) they represent the 
Hamiltonian operator for an electron in a homogeneous magnetic field by a quantized 
harmonic oscillator. However, they treat the radiation field classically. The resulting 
interaction assumes the form of the forced harmonic oscillator which they treat by the 
method of Carruthers and Nieto (1965). This is in fact only a semiclassical treatment 
since a fully quantum mechanical analysis requires the radiation field to  be quantized 
too. 

Furthermore, a distinction is not clearly drawn between the different possible 
initial quantum states for the cyclotron oscillators. Fundamentally different effects 
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occur depending on whether the cyclotron oscillator is initially in an energy eigenstate 
(ie a number state In)) or in a distribution of energy eigenstates with a fixed phase (ie a 
coherent state la)). The solutions for the electron distribution after interaction with 
the field for a time t are found for the electrons initially in (a )  a number state In) ; ( h )  a 
coherent state la). These solutions are compared with the corresponding results obtained 
classically and semiclassically. Such solutions are familiar from isomorphic problems 
in quantum optics. In quantum optics solutions for an initial number state of the 
electromagnetic field are usually of little more than academic interest since a number 
state is rarely a realistic description of a photon state at optical frequencies. However. 
since it is possible to achieve a monoenergetic state of orbiting electrons in cyclotron 
resonance corresponding to a number state, the solutions assume a physical significance. 
Thus the cyclotron resonance detector offers a possible experimental test of these 
unverified theoretical results. 

2. Interaction with a singlemode radiation field 

We first consider the interaction of electrons undergoing cyclotron motion with a single 
mode of the radiation field. Following Landau and Lifshitz (1965) we represent the 
Hamiltonian operator for an electron in a homogeneous magnetic field by a quantized 
harmonic oscillator a. The single mode of the radiation field is also quantized and 
represented by the boson annihilation operator b. The interaction may be described 
by the phenomenological Hamiltonian 

H = hosta +hwbtb+ hK(atb +abt)  (2.1) 

where K is the coupling constant and we have assumed resonance. We have dropped 
the counter rotating terms atbt  +ab  since they are so far from resonance that a negligible 
transfer of power occurs (Robinson 1970a). 

The Hamiltonian (2.1) is familiar in nonlinear optics as describing the process of 
parametric frequency conversion. A quantum statistical analysis of this process has 
been given by Tucker and Walls (1969, to be referred to as I)  and %'U (1973). We shall 
draw on the results of I for our present discussion. 

The time-dependent behaviour of the interacting system of radiation field plus 
electrons is described by the Heisenberg operators (I, equation (2.4)) : 

a(t) = e-'"'(a cos ~ t - i b  sin K t )  

b(t) = e-'"'(b cos ~ t -  ia sin K t ) .  

The statistical properties of the system at time t for any given initial state may be derived 
using the above operator solutions. 

We consider the radiation field to be initially in a chaotic state. This is the state 
characteristic of, for example, a thermal field. The initial density operator for the field 
may be expressed in terms of a P representation (Glauber 1963) : 

where IP) the coherent states are eigenstates of the annihilation operator b. For a 
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chaotic field the P representation has the form 

1 - lPl’ 
= 7 z n  exp (T) (2.4) 

where ii is the mean number of chaotic photons in the field mode. 
We wish to consider two possible initial states for the cyclotron oscillators. 

2.1. Initial number state In) 

We first consider the case where we have achieved a perfectly monoenergetic system of 
orbiting electrons, that is a pure energy eigenstate or a number state In). Our objective 
is to calculate how the electrons are redistributed in the Landau level of states after 
interaction with the field for a time t. This may best be accomplished by first calculating 
the P representation for the cyclotron oscillators at time t .  

This calculation is described in detail in I and here we merely quote the result (I, 
equation (7.15)) (see also Wu 1973): 

(2 .5)  

where L, is the Laguerre polynomial. Some care must be taken in the use of this solution 
since we note that as sin’Kt approaches zero P(a, t) is a rapidly oscillating function of x .  
At these times the cyclotron oscillators are in the original number state for which the 
P representation is highly singular. For ii # 0, since L,(y) > 0 for y < 0 it follows from 
equation (2.5) that P(a,  t )  is positive definite for times such that sin2Kt > (1 +E)- 

From the P representation we may calculate the distribution Pm(r) in the Landau 
ladder of eigenstates via the integral 

i P(r, t )  = - 1 . exp (niir;it! I--- (i i  sin’~t-cos’xr!”Ln( 
lX12 COS’Kt 

nn sin2Kt ii sin’Kt ii sin2Kt(cos2Kt - ii sin‘Kt) 

Evaluating this integral (Erdelyi 1954) we arrive at the result 

ii sinzKt - cos2Kr 

ii sin2Kt ! Pm(t) = (2m!fi sin*Kt)- 

- n ,  -m, -m-n,-  

where 

1. 1 ii sin2Kt(cos2Kt - f i  sin2Kt) 
$ =  l + v  ( n sin’,,) ( cos2Kt 

(2.7) 

r is the gamma function and 2F1 the hypergeometric function. 
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We note a difference in the expression (2.7) to that obtained by the semiclassical 
analysis of Robinson and Whitbourn. The latter analysis, however, suffers from the 
inability to include the statistical state of the radiation field. 

The experimental measurement of the distribution of electrons after interaction by 
means of a variable bias potential barrier is described by Robinson (1970a, 1973). 

The total energy absorbed from the radiation field by the electrons may be calculated 
in the Heisenberg picture as follows. 

The energy absorbed after a time t is given by 

A E  = E(t )  - E(0) = Tr(p(O)H,(t)) - Tr(p(O)H,(O)) (2.8) 

where p(0)  is the initial density operator for the system of electrons plus radiation field : 

The Hamiltonian H,(r) for the cyclotron oscillators may be written using the solutions 
given by equation (2.2) as 

H,(t)  = hwat(t)a(t) 

= ho(at(0)a(O) CoS2Kt +bt(0)h(O) s i n 2 K r  + Im a(0)bt(O) sin 2 ~ t ) .  (2.10) 

Evaluation of the trace in equation (2.8) yields 

A E  = ho(fi-n)sin2~t.  (2.11) 

Thus a nett absorption of radiation results provided f i  > n. This expression corresponds 
to the phase averaged term W, derived in the classical treatment (Robinson 1970). 

The third term in equation (2.10) is phase-dependent and gives a zero contribution 
when the oscillator is in a number state. This is because the number state has acompletely 
unspecified phase. This corresponds to the classical situation where averaging over 
completely random phases yields a null result. As we shall see in the next subsection the 
sensitivity of the detector is enhanced when the electrons are in a state of fixed phase. 

2.2. Initial coherenr state 

Instead of preparing the electrons in a pure energy eigenstate one may allow the electrons 
to occupy a distribution of energy eigenstates such that one has a state with a definite 
phase. That is, one prepares the cyclotron oscillators in a coherent state la,). These 
coherent states have been studied extensively in the context of electromagnetic radiation 
(see for example Glauber 1963). Malkin and Man'ko (1969) have shown how they may 
be useful in describing the motion of a charged particle in a magnetic field. For a 
coherent state the initial distribution in the Landau level of states is Poissonian: 

P,(o) = / c t 0 l Z n  e-l"Ol'/n! (2.12) 

with mean lao/2.  

the cyclotron oscillators is given by (I, equation (6.3)) 
After interaction with a chaotic radiation field for a time t ,  the P representation for 

(2.13) 
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where 

3(t) = e-'"'r0 cos ~ t .  

Thus the cyclotron oscillators are no longer in a coherent state but a mixture of 
coherent and chaotic states, the noisy character having been introduced through the 
interaction with the thermal field. 

The distribution of the electrons in the Landau ladder of states may be obtained via 
the integral equation (2.6). Evaluation of this integral (Lachs 1965, Glauber 1966) yields 

) .  (2.14) 
E + 1  

The total energy absorbed from the radiation field after interaction for a long time t 
may be calculated from equation (2.8), where now 

Evaluation of the trace yields 

A E  = ho(ii-nIsinZKt+Iscolii' s i n 4 s i n 2 ~ t  (2.16) 

where x o  = lsco1e'@. 
This corresponds to the expression A E  = W, + W, obtained classically (Robinson 

1970). The second term corresponding to  W, arises from the third term in equation (2.10). 
This phase-dependent term yields a finite contribution for a coherent state since the 
coherent state has a fixed phase. The correspondence of the classical system of electrons 
with a fixed phase with the coherent states of quantum mechanics is clear. 

The additional energy absorbed resulting from the term W, is, as Robinson notes, 
relatively large and should be easily measurable. Robinson has shown that when a 
system of electrons with 20 eV initial energy is brought into resonant interaction for a 
time t = lO-'s with a field E ,  = 5Vm-' ,  the mean energy acquired is 0.022 eV 
while the maximum energy A E  reaches 1.522 eV. 

This distinction between the possible initial quantum states of the cyclotron oscil- 
lators and the considerable difference in the results obtained therefrom is not made 
clear in Robinson and Whitbourn's analysis. They calculate the redistribution of 
electrons in the Landau ladder starting with an initial number state ; they then show 
that the energy transfer for an initial coherent cyclotron oscillation state is given by 
Wl + W2 without clearly elucidating the fundamental difference between these two 
quantum states. 

From our analysis it is clear that to optimize the detector efficiency one requires the 
electrons to be in a coherent state initially. However, the possibility of preparing initial 
number states in cyclotron resonance to test formulae applied in quantum optics where 
experimental testing is not feasible offers another application of the proposed detector. 

3. Interaction with a broadband radiation field 

The assumption of a single-mode radiation field is of course an unrealistic one, since 
one is normally interested in detecting a broadband radiation field. The interaction of 
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the cyclotron oscillators with a broadband field may be described by the phenomeno- 
logical Hamiltonian 

(3.1) 1 H = hw,a'a+hCojbfbj+h a tC tc jb j+aCtcTb j  i 
where the b, are the annihilation operators for the field modes with frequency w,. 

The probability distribution of electrons in the occupied Landau levels is then best 
obtained using master equation techniques. In fact the above Hamiltonian describes 
the interaction of a single harmonic oscillator with a large reservoir of harmonic 
oscillators. 

A master equation for Pm(t), the probability of the mth level being occupied at time t ,  
may be derived under the assumption that the density operator of the radiation field is 
not appreciably altered during the interaction. That is, the radiation field is of sufficient 
strength so as to be relatively undepleted during the interaction. The radiation field is 
assumed to be a thermal field with density operator 

(3.2) 
where p = 1ikT. 

The resultant Markoffian master equation is well known (see the review article by 
Agarwal(1973) and references contained therein) and assumes the following form in the 
Fock representation : 

pb(0)  = exp( - f&kojb:bj)/Triexp( - pChojb)bj)) 

-- d P m  - -yi(m+l)P,+y(ii+l)(m+ t )Pm+,-~( i i+l )mPm+yi imP, , - ,  (3.3) 
dt 

where ii is the mean number of photons per mode in the radiation field evaluated about 
w, and 7 = ~ ~ C ~ ( W , ) / K ( O ) , ) / ~ ,  where g ( o j )  is the density of the radiation field modes. Again 
we consider solutions to this equation for two particular initial states of the cyclotron 
oscillators. 

3.1. Initial number state 

For the case where one has prepared the orbiting electrons in an energy eigenstate in) 
we must solve equation (3.3) subject to the initial condition 

PJO) = b",,. (3.4) 

A solution to (3.3) for the initial condition (3.4) has been given by Agarwal (1969) and 
Schell and Barakat (1973). The result is 

where 

a = ii(l -e-? ')  

2 = ( 1  -aeY')(l +a). 

Again this result differs from the semiclassical expression (Robinson and Whitbourn 
1973), since in our formalism we are able to include realistic information as to the 
spectral nature and statistical properties of the radiation field. The distribution assumes 
a similar functional form to the expression (2.7) obtained for the single-mode case 
(allowing for the difference in time-dependent behaviour). 
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3.2. Initial coherent state 

If the electrons are initially prepared in a phased coherent state the initial density 
operator for the cyclotron oscillators is 

P(0) = l a o > ( 4 .  (3.6) 

To obtain the electron distribution at time t it is more convenient to work with the 
Fokker-Planck equation corresponding to equation (3.3). The Fokker-Planck equation 
for the P function for the cyclotron oscillators is given by 

(3.7) 

The solution to this equation for the initial coherent state equation (3.6) corresponding 
to the initial condition P(u, 0) = d2(u - r o )  is 

Again we note the noisy character of the distribution resulting from the interaction with 
the thermal field. The distribution of electrons in the Landau levels is obtained from 
equation (3.8) via the integral equation (2.6) with the result 

where i i(t) = ii(1 -e-#') .  
One notes that the same functional form results as for the single-mode radiation 

field equation (2.14), apart from a difference in the time-dependent behaviour. For short 
times y t ,  K t  << 1, the time-dependent behaviour also becomes identical. 

4. Summary 

The quantum statistical properties of the cyclotron resonance detector have been 
discussed based on appropriate model Hamiltonians. The response of the detector is 
strongly dependent upon the initial quantum state of the cyclotron oscillators. The 
average energy absorbed from the radiation field when the cyclotron oscillators are 
initially in an n quantum state is considerably less than when the initial state is a coherent 
superposition of number states. This difference stems from the intrinsic uncertainty in 
phase possessed by a number state, thus yielding a null contribution when tracing over 
the phase-dependent term of the Hamiltonian. 

Thus for maximum sensitivity the cyclotron oscillators should initially be prepared 
in a coherent state. However, the possibility of preparing an initial n quantum state 
offers the intriguing possibility of testing theory commonly used in quantum optics, 
where the preparation of an n photon state is not feasible. 
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